ATI TEAS 7
TEAS Test 7 science quizlet
1. What happens to the acceleration of an object when the force acting on it is increased, assuming the mass remains constant?
- A. Acceleration increases
- B. Acceleration decreases
- C. Acceleration remains constant
- D. Acceleration becomes zero
Correct answer: A
Rationale: According to Newton's second law of motion, acceleration is directly proportional to the force acting on an object when the mass is constant. Therefore, if the force acting on an object is increased while the mass remains constant, the acceleration of the object will also increase. This relationship is described by the formula F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. When force increases, acceleration increases, and vice versa, as long as the mass stays the same. Choice B (Acceleration decreases) is incorrect because acceleration and force have a direct relationship. Choice C (Acceleration remains constant) is incorrect because acceleration changes in response to changes in force. Choice D (Acceleration becomes zero) is incorrect because increasing force does not make acceleration zero; it actually increases it.
2. What is the dermis composed of?
- A. Adipose tissue
- B. Epithelial cells
- C. Connective tissue
- D. Muscle tissue
Correct answer: C
Rationale: The correct answer is C: Connective tissue. The dermis is primarily composed of connective tissue, which includes collagen and elastin fibers that provide strength and elasticity to the skin. It houses blood vessels, nerve endings, hair follicles, and glands, playing a crucial role in supporting the skin structure and function. Adipose tissue (choice A) is found in the subcutaneous layer beneath the dermis, providing insulation and energy storage. Epithelial cells (choice B) form the outermost layer of the skin called the epidermis. Muscle tissue (choice D) is not a significant component of the dermis but is found deeper in the body associated with movement and support.
3. Which of the following are functions of the liver?
- A. Supports waste disposal
- B. Aids in blood clotting through plasma protein synthesis
- C. Emulsifies fats through bile production
- D. All of the above
Correct answer: D
Rationale: The liver performs various essential functions in the body. It supports waste disposal by breaking down toxins and producing bile to eliminate waste, aids in blood clotting through the synthesis of plasma proteins like fibrinogen, and emulsifies fats by producing bile that helps in fat digestion. All the statements accurately describe functions of the liver, making option D 'All of the above' the correct choice. Option A is incorrect as it oversimplifies the waste disposal function without mentioning the breakdown of toxins. Option B is incorrect as it only focuses on blood clotting and not the other functions of the liver. Option C is incorrect as it solely emphasizes fat emulsification and does not cover the liver's other crucial roles.
4. What is the oxidation state of carbon in CH4?
- A. +1
- B. -1
- C. +2
- D. -4
Correct answer: D
Rationale: In CH4 (methane), carbon is bonded to four hydrogen atoms. Hydrogen has an oxidation state of +1. Since the overall charge of CH4 is 0, the oxidation state of carbon must be -4 to balance the charges. Each hydrogen contributes an oxidation state of +1, resulting in a total of +4 from hydrogen atoms. To achieve a total oxidation state of 0 for the molecule, carbon must have an oxidation state of -4 to offset the contribution from hydrogen. Therefore, the correct answer is -4. Choices A, B, and C are incorrect: +1 is the oxidation state of hydrogen, -1 is not the oxidation state of carbon in methane, and +2 is not the correct oxidation state of carbon in CH4.
5. Which element is used in fire extinguishers to smother flames by displacing oxygen?
- A. Nitrogen
- B. Carbon dioxide
- C. Helium
- D. Argon
Correct answer: B
Rationale: Carbon dioxide is the correct answer. It is used in fire extinguishers because it displaces oxygen, which is necessary for combustion. When carbon dioxide is released onto a fire, it reduces the oxygen concentration around the flames, effectively smothering the fire. This disruption of oxygen availability interrupts the chemical reaction that sustains the fire. Nitrogen (Choice A), helium (Choice C), and argon (Choice D) are not typically used in fire extinguishers for smothering flames by displacing oxygen. Nitrogen is an inert gas that can displace oxygen but is not as effective as carbon dioxide in fire suppression.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access