ATI TEAS 7
TEAS Test 7 science quizlet
1. What happens to the acceleration of an object when the force acting on it is increased, assuming the mass remains constant?
- A. Acceleration increases
- B. Acceleration decreases
- C. Acceleration remains constant
- D. Acceleration becomes zero
Correct answer: A
Rationale: According to Newton's second law of motion, acceleration is directly proportional to the force acting on an object when the mass is constant. Therefore, if the force acting on an object is increased while the mass remains constant, the acceleration of the object will also increase. This relationship is described by the formula F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. When force increases, acceleration increases, and vice versa, as long as the mass stays the same. Choice B (Acceleration decreases) is incorrect because acceleration and force have a direct relationship. Choice C (Acceleration remains constant) is incorrect because acceleration changes in response to changes in force. Choice D (Acceleration becomes zero) is incorrect because increasing force does not make acceleration zero; it actually increases it.
2. What impact would the removal of a keystone species have in an ecosystem?
- A. Lead to a decrease in competition among other species
- B. Cause a slight increase in primary productivity
- C. Have a minimal impact on the overall ecosystem structure
- D. Disrupt the food web and cause cascading effects on other populations
Correct answer: D
Rationale: Keystone species play a crucial role in maintaining the balance and structure of an ecosystem due to their significant influence. If a keystone species is removed, it disrupts the delicate food web dynamics and can trigger cascading effects throughout the ecosystem. The disruption in predator-prey relationships can lead to population declines and even extinctions of other species. Options A, B, and C are incorrect because the removal of a keystone species would not decrease competition among other species, cause a slight increase in primary productivity, or have a minimal impact on the overall ecosystem structure. Instead, it would have a profound impact, disrupting the food web and causing cascading effects on other populations.
3. Why are negative feedback mechanisms crucial in the endocrine system?
- A. To increase hormone production continuously
- B. To maintain hormone levels within a specific range
- C. To cause a constant release of hormones
- D. To disrupt communication between glands
Correct answer: B
Rationale: Negative feedback mechanisms in the endocrine system play a vital role in maintaining hormone levels within a specific range. When hormone levels deviate from the set point, negative feedback signals prompt adjustments in hormone production to bring the levels back to the optimal range. This process ensures a delicate balance of hormones in the body, preventing excesses or deficiencies. Choice A is incorrect because continuously increasing hormone production would lead to imbalances. Choice C is incorrect as a constant release of hormones without regulation would disrupt homeostasis. Choice D is incorrect because disrupting communication between glands would hinder proper coordination and regulation of hormone levels, which is essential for the body's overall function.
4. Which of the following is the main organ responsible for producing bile?
- A. Liver
- B. Gallbladder
- C. Pancreas
- D. Stomach
Correct answer: A
Rationale: The liver is the main organ responsible for producing bile. Bile, a greenish-yellow fluid, is produced by the liver and stored in the gallbladder. Its primary function is to aid in the digestion and absorption of fats in the small intestine. When needed, the gallbladder releases bile into the small intestine to facilitate fat digestion. The pancreas produces digestive enzymes and insulin, not bile, making choice C incorrect. The stomach's primary role is to digest food through gastric juice secretion, making choice D incorrect. Therefore, the correct answer is the liver, as it is the main organ responsible for bile production.
5. Which technology allows scientists to directly edit the human genome?
- A. Polymerase Chain Reaction (PCR)
- B. Gel electrophoresis
- C. DNA sequencing
- D. CRISPR-Cas9
Correct answer: D
Rationale: CRISPR-Cas9 is the correct answer. A) Polymerase Chain Reaction (PCR) is used for amplifying specific DNA segments, not directly editing the human genome. B) Gel electrophoresis is for separating DNA fragments by size, not for genome editing. C) DNA sequencing determines DNA nucleotide order but does not directly edit the genome. D) CRISPR-Cas9 technology enables precise modifications in the DNA of organisms, including humans. It guides the Cas9 enzyme to specific genome locations for targeted edits, revolutionizing genetic research and offering various applications in gene editing and therapy. Unlike the other techniques mentioned, CRISPR-Cas9 is specifically designed to make changes in the genetic code itself, making it a powerful tool for genetic manipulation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access