ATI TEAS 7
TEAS 7 science study guide free
1. What are the two main types of nuclear decay, and what differentiates them?
- A. Fission and fusion, based on the size of the nucleus
- B. Alpha and beta decay, based on the emitted particle
- C. Spontaneous and induced decay, based on the trigger
- D. Isotope decay and chain reactions, based on the stability of the nucleus
Correct answer: B
Rationale: The correct answer is B. The two main types of nuclear decay are alpha and beta decay, which are differentiated based on the emitted particle. In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus, while in beta decay, a beta particle (either an electron or a positron) is emitted. These decay types are distinguished by the particles they emit, not by the size of the nucleus, trigger, or stability of the nucleus. Choices A, C, and D are incorrect because fission, fusion, spontaneous, induced, isotope decay, and chain reactions are different processes in nuclear physics and do not represent the two main types of nuclear decay based on emitted particles.
2. How are mass and inertia related?
- A. Mass is a measure of inertia
- B. Mass has no relationship with inertia
- C. Inertia is a measure of weight
- D. Inertia increases with decreasing mass
Correct answer: A
Rationale: Mass is a measure of inertia. Inertia is the resistance of an object to changes in its state of motion, and mass quantifies this resistance. Objects with more mass have greater inertia, meaning they are more resistant to changes in their motion. Therefore, mass and inertia are directly related, with mass being a fundamental factor that determines the level of inertia an object possesses. Choice B is incorrect because mass and inertia are indeed related. Choice C is incorrect as inertia is not a measure of weight but rather a property related to an object's mass. Choice D is incorrect because inertia actually increases with increasing mass, not decreasing mass.
3. What is the formula to calculate kinetic energy?
- A. Kinetic Energy = Mass × Velocity
- B. Kinetic Energy = Force × Distance
- C. Kinetic Energy = Power × Time
- D. Kinetic Energy = Potential Energy ÷ Time
Correct answer: A
Rationale: Kinetic energy is the energy an object possesses due to its motion. The formula to calculate kinetic energy is KE = 0.5 × mass × velocity^2, which can also be written as KE = mass × (velocity)^2. Therefore, the correct formula is Kinetic Energy = Mass × Velocity. Choice B is incorrect because it represents the work formula. Choice C is incorrect as it represents the formula for work done. Choice D is incorrect as it does not accurately represent the formula for calculating kinetic energy.
4. What is the primary purpose of control rods within a nuclear reactor?
- A. Reflecting neutrons back into the core
- B. Absorbing excess neutrons to control criticality
- C. Moderating the velocity of neutrons
- D. All of the above
Correct answer: B
Rationale: The primary purpose of control rods in a nuclear reactor is to absorb excess neutrons to control criticality. When inserted into the reactor core, control rods absorb neutrons, reducing the number available for sustaining the fission chain reaction. This action allows operators to manage the reactor power levels and prevent overheating or runaway reactions. Reflecting neutrons back into the core and moderating neutron velocity are not the primary functions of control rods in a nuclear reactor. Choice A is incorrect because control rods do not reflect neutrons back into the core but absorb them. Choice C is incorrect as the moderation of neutron velocity is typically achieved by other materials like a moderator (e.g., water, graphite) rather than control rods. Choice D is incorrect as control rods do not reflect neutrons or moderate neutron velocity, making it an incorrect option.
5. At the peak of its trajectory, what force is acting on a ball thrown upwards?
- A. Gravity only
- B. Gravity and air resistance only
- C. Neither gravity nor air resistance
- D. All of the above
Correct answer: A
Rationale: At the peak of its trajectory, the ball momentarily stops moving upwards before it starts to fall back down. At this point, the only force acting on the ball is gravity, pulling it back towards the ground. Air resistance is negligible at the peak of the trajectory as the ball is momentarily stationary. Therefore, the correct answer is 'Gravity only.' Choices B, C, and D are incorrect. Option B is incorrect because air resistance is minimal when the ball is at its highest point and its velocity is nearly zero. Option C is incorrect as gravity is the only significant force acting on the ball at that instant. Option D is incorrect since air resistance is not a significant factor at the peak of the trajectory.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access