ATI TEAS 7
Mometrix TEAS 7 science practice test
1. What are the building blocks of proteins?
- A. Sugars
- B. Fatty acids
- C. Amino acids
- D. Nucleotides
Correct answer: C
Rationale: Proteins are macromolecules made up of long chains of amino acids. Amino acids are the building blocks of proteins and are linked together through peptide bonds to form polypeptide chains, which then fold into specific three-dimensional structures to carry out various functions in the body. Sugars (choice A) are the building blocks of carbohydrates, fatty acids (choice B) are the building blocks of lipids, and nucleotides (choice D) are the building blocks of nucleic acids like DNA and RNA. Therefore, the correct answer is amino acids (choice C), as they are specifically responsible for protein synthesis.
2. Which of the following joints is an example of a hinge joint?
- A. Hip joint
- B. Elbow joint
- C. Shoulder joint
- D. Knee joint
Correct answer: B
Rationale: The correct answer is B: Elbow joint. A hinge joint allows movement primarily in one plane, enabling bending and straightening actions. The elbow joint specifically functions as a hinge joint, facilitating the bending and straightening of the arm. The other options, such as the hip joint (A), shoulder joint (C), and knee joint (D), are not examples of hinge joints as they allow movement in multiple planes with more complex motions.
3. What is the structure and function of elastic arteries?
- A. They are the smallest arteries and constrict and dilate frequently.
- B. They are medium-sized arteries that distribute blood to various organs.
- C. They are the largest arteries and stretch and recoil to accommodate blood pressure changes.
- D. They are thin-walled arteries that supply blood to the capillaries.
Correct answer: C
Rationale: The corrected answer is C. Elastic arteries, like the aorta, are the largest arteries in the body. They possess elastic fibers in their walls, allowing them to stretch and recoil in response to the pulsatile nature of blood flow from the heart. This elasticity helps to maintain blood pressure by absorbing the pressure waves generated by the heart's contractions and ensuring continuous blood flow to the organs. Choices A, B, and D are incorrect because elastic arteries are not the smallest arteries, do not constrict and dilate frequently, are not medium-sized arteries for distributing blood to various organs, and are not thin-walled arteries supplying blood to capillaries. Elastic arteries have a specific structure and function related to their ability to accommodate blood pressure changes due to their elastic properties, which is essential for the cardiovascular system's proper functioning.
4. During which stage of meiosis II are sister chromatids separated, resulting in four genetically unique daughter cells?
- A. Prophase I
- B. Prophase II
- C. Anaphase I
- D. Anaphase II
Correct answer: D
Rationale: - Prophase I occurs in meiosis I, not meiosis II. During Prophase I, homologous chromosomes pair up and exchange genetic material in a process called crossing over. - Prophase II is the stage where the nuclear envelope breaks down, and spindle fibers start to reappear, preparing the cell for division. Sister chromatids are still attached during Prophase II. - Anaphase I is the stage in meiosis I where homologous chromosomes are separated and pulled to opposite poles of the cell. - Anaphase II is the stage in meiosis II where sister chromatids are separated and pulled to opposite poles of the cell, resulting in four genetically unique daughter cells. This is the stage where the final separation of genetic material occurs, leading to the formation of haploid daughter cells.
5. What happens to the wavelength of a wave when its frequency increases while the speed remains constant?
- A. Wavelength increases
- B. Wavelength decreases
- C. Wavelength remains the same
- D. Wavelength becomes zero
Correct answer: B
Rationale: When the speed of a wave is constant and the frequency increases, the wavelength must decrease to keep the speed constant. The speed of a wave is determined by the product of frequency and wavelength (speed = frequency x wavelength). If the frequency increases while the speed remains constant, the wavelength has to decrease proportionally to maintain the speed unchanged. Therefore, as the frequency increases, the wavelength decreases to ensure that the speed of the wave remains constant. Choice A is incorrect because as frequency increases, wavelength decreases. Choice C is incorrect as the wavelength cannot remain the same when frequency increases while speed is constant. Choice D is incorrect as the wavelength cannot become zero under these conditions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access