in the female reproductive system what structure produces eggs ova
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science study guide free

1. Which structure in the female reproductive system is responsible for producing eggs (ova)?

Correct answer: B

Rationale: The correct answer is the ovaries. Ovaries are the primary reproductive organs in females responsible for producing eggs (ova) through a process known as oogenesis. Ova are released from the ovaries during ovulation and can be fertilized by sperm in the fallopian tubes. The uterus is where a fertilized egg implants and develops into a fetus, while the vagina serves as the birth canal and a site for sexual intercourse. Fallopian tubes are responsible for transporting eggs from the ovaries to the uterus and are the site where fertilization typically occurs. Therefore, while important for the reproductive process, the fallopian tubes do not produce eggs.

2. How does meiosis differ from mitosis?

Correct answer: D

Rationale: Meiosis is the process of cell division that results in the formation of sex cells (gametes) with only half the number of chromosomes as the parent cell, leading to genetically different cells. In contrast, mitosis is a cell division process that produces two daughter cells that are genetically identical to each other and the parent cell, maintaining the same chromosome number. Therefore, the correct answer is D, as meiosis and mitosis differ in their genetic outcomes - meiosis results in genetic diversity, while mitosis maintains genetic identity. Choices A, B, and C are incorrect because they do not accurately distinguish between meiosis and mitosis. Meiosis is not used for repairing the body or asexual reproduction, and the occurrence of both processes in various organisms does not highlight their primary differences in genetic outcomes.

3. How do spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints?

Correct answer: D

Rationale: A) Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset: Proper attachment of chromosomes to spindle fibers is essential for accurate segregation of genetic material during cell division. Misaligned chromosomes that fail to attach to microtubules can lead to delays in anaphase onset, allowing the cell to correct errors before proceeding with division. B) The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression: Kinetochores at the centromeres help attach chromosomes to spindle fibers. When kinetochores are unattached or improperly attached to microtubules, they signal the cell to pause cell cycle progression, ensuring proper chromosome alignment before division. C) Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins: While microtubule dynamics are crucial for cell division, microtubule instability and rapid depolymerization can disrupt chromosome attachment. However, this mechanism is not directly related to the activation of cell cycle checkpoint proteins, making this statement incorrect. Therefore, choices A and B accurately describe how spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints, making option D the correct answer.

4. Which molecules are soluble in nonpolar solvents but are hydrophobic?

Correct answer: B

Rationale: Lipids are hydrophobic molecules that are soluble in nonpolar solvents like oils but insoluble in water. They consist of fats, oils, waxes, and steroids and play essential roles in energy storage, insulation, and cell membrane structure. Carbohydrates, proteins, and nucleic acids are not typically soluble in nonpolar solvents and do not exhibit the same hydrophobic characteristics as lipids. Carbohydrates are usually hydrophilic and soluble in water, proteins have both hydrophilic and hydrophobic regions but are not generally soluble in nonpolar solvents, and nucleic acids are polar molecules that are not known for their solubility in nonpolar solvents.

5. Identify the element with the electron configuration: 1s2 2s2 2p6 3s2 3p6. To which group and period does this element belong?

Correct answer: C

Rationale: The given electron configuration matches that of Argon, an element found in Group 18 of the periodic table. This element is in the third period, as indicated by the highest energy level (n=3) where electrons are present. Therefore, the correct answer is Group 18, Period 3. Choice A (Group 16, Period 3) corresponds to sulfur, not the given electron configuration. Choice B (Group 14, Period 3) corresponds to silicon, not the given electron configuration. Choice D (Group 17, Period 2) corresponds to chlorine, which is in Period 3 but not in Group 18, making it incorrect for the given electron configuration.

Similar Questions

What element is responsible for the green color of leaves?
Which of the following statements is NOT true about DNA?
What is the difference between a prokaryotic cell and a eukaryotic cell?
Which types of molecules can move through a cell membrane by passive transport?
Which part of the ear is responsible for transmitting sound vibrations to the inner ear?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses