ATI TEAS 7
ATI TEAS 7 science review
1. How are sister chromatids distinguished from homologous chromosomes in meiosis I?
- A. Sister chromatids share the same centromere, while homologous chromosomes have different centromeres.
- B. Sister chromatids have identical DNA sequences, while homologous chromosomes have slightly different sequences due to crossing over.
- C. Sister chromatids repel each other, while homologous chromosomes attract each other during synapsis.
- D. Sister chromatids separate during anaphase I, while homologous chromosomes separate during anaphase II.
Correct answer: B
Rationale: In meiosis I, sister chromatids are exact copies of each other, containing identical DNA sequences. On the other hand, homologous chromosomes are pairs of chromosomes, with one inherited from each parent, and they can have different versions of genes due to genetic recombination during crossing over in prophase I. Choice A is incorrect because homologous chromosomes naturally have different centromeres. Choice C is incorrect as sister chromatids and homologous chromosomes do not exhibit repulsion or attraction during synapsis. Choice D is incorrect as sister chromatids separate during anaphase II, not anaphase I, while homologous chromosomes separate during anaphase I.
2. Which of the following structures is unique to eukaryotic cells?
- A. Cell walls
- B. Nuclei
- C. Cell membranes
- D. Vacuoles
Correct answer: B
Rationale: Nuclei are structures that are unique to eukaryotic cells. Prokaryotic cells lack a defined nucleus, and their genetic material floats freely in the cytoplasm. Eukaryotic cells have nuclei that house the genetic material in the form of chromosomes, separated from the cytoplasm by a nuclear membrane. This distinct organelle is a key feature that sets eukaryotic cells apart from prokaryotic cells. Cell walls (Choice A) are found in plant cells, fungi, and some prokaryotes but are not unique to eukaryotic cells. Cell membranes (Choice C) are present in both prokaryotic and eukaryotic cells, serving as a barrier that encloses the cell contents. Vacuoles (Choice D) are membrane-bound organelles found in both plant and animal cells, making them not unique to eukaryotic cells.
3. Which of the following structures is responsible for preventing the backflow of blood from the left ventricle into the left atrium?
- A. Aortic valve
- B. Pulmonary valve
- C. Tricuspid valve
- D. Mitral valve
Correct answer: D
Rationale: The correct answer is D, the Mitral valve. The mitral valve, also known as the bicuspid valve, is situated between the left atrium and the left ventricle. Its primary function is to prevent the backflow of blood from the left ventricle into the left atrium during ventricular contraction. The other choices are incorrect because: A) The aortic valve prevents backflow from the aorta into the left ventricle. B) The pulmonary valve prevents backflow from the pulmonary artery into the right ventricle. C) The tricuspid valve prevents backflow from the right ventricle into the right atrium.
4. Which of the following represents a form of potential energy?
- A. A moving car
- B. A spinning top
- C. A raised hammer
- D. A rolling ball
Correct answer: C
Rationale: A raised hammer represents potential energy as it possesses stored energy due to its position above the ground. When the hammer falls, this potential energy is converted into kinetic energy as it moves. In contrast, options A, B, and D involve objects already in motion, representing kinetic energy. Choice A, a moving car, is in motion and has kinetic energy. Choice B, a spinning top, is also in motion and exhibits kinetic energy. Choice D, a rolling ball, is already moving and thus has kinetic energy. Therefore, only choice C, a raised hammer, is the correct representation of potential energy among the given options.
5. Which statement correctly describes the concept of ionization energy?
- A. The energy required to remove an electron from an outermost shell.
- B. The energy released when an electron bonds with an atom.
- C. The total energy possessed by all electrons in an atom.
- D. The energy needed to change an atom's nucleus.
Correct answer: A
Rationale: Ionization energy is defined as the energy required to remove an electron from an atom in the gaseous state. This process typically involves removing an electron from the outermost shell of the atom. Therefore, option A accurately describes the concept of ionization energy. The other choices do not accurately describe ionization energy; option B refers to bond formation energy, option C is about the total energy of electrons in an atom, and option D relates to nuclear energy changes, not ionization energy.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access