ATI TEAS 7
ATI TEAS Science Questions
1. If Silicon (Si) has an atomic mass of 28.1 AMU (atomic mass units), which of the following is the most likely number of neutrons an atom of Silicon would have?
- A. 28.1
- B. 14
- C. 28
- D. 14.2
Correct answer: B
Rationale: Silicon has an atomic number of 14, indicating it has 14 protons. The atomic mass of 28.1 AMU accounts for both protons and neutrons in the nucleus. By subtracting the atomic number from the atomic mass, we can estimate the number of neutrons in the atom. Thus, 28.1 - 14 = 14 neutrons. Choice A is incorrect as it represents the total atomic mass, not the number of neutrons. Choice C is incorrect; it is the atomic number (protons) rather than the number of neutrons. Choice D is incorrect as it is a value that does not reflect the number of neutrons in the silicon atom.
2. Molecular clocks utilize the accumulation of mutations in DNA sequences to estimate the evolutionary divergence time between species. This method relies on the assumption that:
- A. The rate of mutation is constant across all genes and all species.
- B. Species with more morphological similarities diverged more recently.
- C. Mutations are always beneficial and contribute to increased fitness.
- D. The fossil record provides the most accurate estimates of evolutionary relationships.
Correct answer: A
Rationale: A molecular clock is a method used to estimate the time of divergence between species by measuring the accumulation of mutations in DNA sequences. This method relies on the assumption that mutations occur at a relatively constant rate over time. If the rate of mutation were not constant, it would be challenging to accurately estimate the evolutionary divergence time between species. Therefore, option A is the most appropriate choice as it aligns with the fundamental principle underlying the molecular clock hypothesis. Option B is incorrect because the assumption that species with more morphological similarities diverged more recently does not directly relate to the concept of molecular clocks and the accumulation of mutations in DNA sequences. Option C is incorrect because mutations are not always beneficial and do not always contribute to increased fitness. Mutations can be neutral or deleterious as well, and their accumulation is what is used to estimate evolutionary di
3. What is the acceleration due to gravity near the Earth's surface?
- A. 9.8 meters per second squared (m/s²)
- B. 6.3 meters per second squared (m/s²)
- C. 5.0 meters per second squared (m/s²)
- D. 12.5 meters per second squared (m/s²)
Correct answer: A
Rationale: The acceleration due to gravity near the Earth's surface is approximately 9.8 m/s². This value is commonly used in physics calculations and represents the rate at which an object accelerates towards the Earth when in free fall. The acceleration due to gravity is a constant value near the Earth's surface and affects the motion of all objects. Choices B, C, and D are incorrect as they do not represent the standard value of 9.8 m/s². Understanding the correct value of acceleration due to gravity is fundamental in physics as it helps in solving various problems related to motion, forces, and energy.
4. Which factor most significantly affects the kinetic energy of an object?
- A. The object's mass
- B. The object's velocity
- C. The object's displacement
- D. The object's potential energy
Correct answer: B
Rationale: Kinetic energy is directly proportional to the square of an object's velocity. This means that changes in velocity have a greater impact on the kinetic energy of an object compared to changes in mass, displacement, or potential energy. The mass of an object affects its kinetic energy, but the effect is linear, not squared like velocity. Displacement does not directly affect kinetic energy, as it is a measure of the change in position, not related to motion. Potential energy is a different form of energy and is not directly related to the kinetic energy of an object. Therefore, the velocity of an object has the most significant effect on its kinetic energy.
5. At the peak of a baseball's trajectory, which of the following forces is acting on the ball?
- A. Only gravitational force
- B. Only the force of air resistance
- C. Both gravitational force and the force of air resistance
- D. Neither gravitational force nor the force of air resistance
Correct answer: A
Rationale: At the peak of a baseball's trajectory, the ball momentarily stops moving upwards before it starts to fall back down. During this moment of temporary rest, the only force acting on the ball is the gravitational force pulling it downward towards the Earth. The force of air resistance is negligible at this point because the ball is momentarily stationary, and air resistance requires motion to be significant. Therefore, the correct answer is that only the gravitational force is acting on the ball at the peak of its trajectory. Choices B, C, and D are incorrect because air resistance does not have a significant effect when the ball is at its peak and momentarily stationary.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access