if silicon si has an atomic mass of 281 amu atomic mass units which of the following is the most likely number of neutrons an atom of silicon would ha
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Science Questions

1. If Silicon (Si) has an atomic mass of 28.1 AMU (atomic mass units), which of the following is the most likely number of neutrons an atom of Silicon would have?

Correct answer: B

Rationale: Silicon has an atomic number of 14, indicating it has 14 protons. The atomic mass of 28.1 AMU accounts for both protons and neutrons in the nucleus. By subtracting the atomic number from the atomic mass, we can estimate the number of neutrons in the atom. Thus, 28.1 - 14 = 14 neutrons. Choice A is incorrect as it represents the total atomic mass, not the number of neutrons. Choice C is incorrect; it is the atomic number (protons) rather than the number of neutrons. Choice D is incorrect as it is a value that does not reflect the number of neutrons in the silicon atom.

2. After exposure to a pathogen, the immune system develops memory. What type of immune cell is responsible for this immunological memory?

Correct answer: A

Rationale: B cells are responsible for immunological memory. Memory B cells, a type of B cells, retain a 'memory' of specific pathogens, enabling them to rapidly produce antibodies upon re-exposure. This rapid antibody production facilitates a quicker and more effective immune response. Although memory T cells also contribute to immunological memory by mounting a swift and robust immune response upon re-exposure to the pathogen, it is primarily memory B cells that play a crucial role in producing antibodies. Phagocytes are important immune cells involved in engulfing and digesting pathogens, while natural killer cells are primarily responsible for recognizing and eliminating abnormal cells, such as virus-infected cells or tumor cells. However, when it comes to immunological memory and antibody production, B cells are key players.

3. Which factor affects the gravitational potential energy of an object the most?

Correct answer: B

Rationale: Gravitational potential energy is directly proportional to the height or distance from the ground. As the object is raised higher, its gravitational potential energy increases. While the mass of the object influences gravitational potential energy, the distance from the ground has a more significant impact on it. The gravitational force does not directly affect the gravitational potential energy; it is the force that causes the potential energy to change with height. The shape of the object also does not determine gravitational potential energy, as it is primarily determined by the object's position in a gravitational field.

4. How does the body maintain a relatively constant blood pH level, even with changes in blood carbon dioxide concentration?

Correct answer: C

Rationale: The correct answer is C: Buffering system. The buffering system is responsible for maintaining a relatively constant blood pH level by minimizing changes in pH when acids or bases are added to the blood. This system consists of chemical compounds that can donate or accept protons to help stabilize the pH. Choice A, Cellular respiration, and Choice B, Gas exchange, are processes involved in gas exchange within the body, not specifically related to maintaining blood pH. Choice D, Deoxygenation, refers to the removal of oxygen from a substance and is not directly related to the regulation of blood pH.

5. Iron is a transition metal, which means it often forms a cation with a charge of what?

Correct answer: C

Rationale: The correct answer is C: 2+ or 3+. Transition metals, like iron, are known for their ability to exhibit variable oxidation states. This characteristic allows them to form cations with charges such as 2+ or 3+. Specifically, iron can form cations with these charges due to the varying electron configurations in its d-orbitals. The other choices are incorrect because transition metals typically form positively charged cations, not negatively charged ones. Additionally, while iron can form cations with charges of 2+ or 3+, it does not commonly form cations with charges of 1- or 1+. Transition metal cations play a crucial role in forming coordination complexes with ligands, highlighting their importance in various chemical reactions.

Similar Questions

Which of the following structures is the natural pacemaker of the heart?
How does the human eye focus light?
Which of the following describes the difference between prokaryotic and eukaryotic cells?
What are the primary processes involved in breathing?
How can you differentiate between a bacterial and viral infection based solely on symptoms?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses