ATI TEAS 7
TEAS 7 science practice questions
1. How is power related to energy?
- A. Power is the same as energy
- B. Energy is the rate at which work is done
- C. Power is the amount of stored energy
- D. Energy is the rate at which power is transferred
Correct answer: B
Rationale: Energy is the capacity to do work, while power is the rate at which work is done or energy is transferred. Power is the amount of energy transferred or converted per unit time. Therefore, energy is related to power as the rate at which work is done. Choice A is incorrect because power and energy are not the same; they are related concepts but represent different aspects. Choice C is incorrect because power does not refer to stored energy but rather the rate of energy transfer. Choice D is incorrect because energy is not the rate at which power is transferred, but the capacity to do work or cause change.
2. What is the process of breaking down proteins into amino acids called?
- A. Proteolysis
- B. Lipolysis
- C. Carbohydrate catabolism
- D. Nucleic acid catabolism
Correct answer: A
Rationale: Proteolysis is the specific process of breaking down proteins into amino acids. Lipolysis refers to the breakdown of fats into fatty acids and glycerol, not proteins. Carbohydrate catabolism involves the breakdown of carbohydrates into glucose for energy production, not proteins. Nucleic acid catabolism is the breakdown of nucleic acids into nucleotides, not proteins. Therefore, in the context of breaking down proteins into amino acids, the correct term is proteolysis.
3. Which of the following best describes a function carried out by the circulatory system and the integumentary system working together?
- A. Removal of excess heat from the body
- B. Hormonal regulation of blood pressure
- C. Transport of oxygen in the body
- D. Production of red blood cells in the bone marrow
Correct answer: A
Rationale: The correct answer is A: Removal of excess heat from the body. The circulatory system, which includes blood vessels and the heart, works with the integumentary system, which consists of the skin, to regulate body temperature by removing excess heat. This process involves blood vessels near the skin's surface dilating to release heat and constricting to conserve heat, a mechanism crucial for maintaining homeostasis. Option B, Hormonal regulation of blood pressure, is incorrect as it does not accurately describe the collaborative function of these systems in regulating body temperature. Option C, Transport of oxygen in the body, is incorrect as it focuses on a different function of the circulatory system. Option D, Production of red blood cells in the bone marrow, is incorrect as it pertains to the skeletal and hematopoietic systems, not the circulatory and integumentary systems working together to regulate body temperature.
4. If the mass of an object remains constant and its velocity doubles, how does its momentum change?
- A. Momentum doubles
- B. Momentum halves
- C. Momentum quadruples
- D. Momentum remains the same
Correct answer: C
Rationale: Momentum is calculated as the product of an object's mass and its velocity. When the mass remains constant and the velocity doubles, the momentum will increase by a factor of 2 (doubling) due to the increase in velocity. Therefore, the momentum will quadruple (2 x 2 = 4) when the velocity doubles. This relationship between momentum and velocity showcases the direct proportionality of momentum to velocity, given a constant mass. Choices A, B, and D are incorrect. Momentum does not simply double or halve when the velocity doubles; it quadruples as it is directly proportional to the velocity. Hence, the correct answer is C, where momentum quadruples in this scenario.
5. In the K-capture process, a type of electron capture, from which electron shell does the electron get captured?
- A. The outermost s-orbital
- B. An inner p-orbital
- C. An inner d-orbital
- D. Any available electron shell
Correct answer: B
Rationale: The K-capture process involves the capture of an electron from the innermost electron shell, known as the K-shell. The K-shell comprises s and p orbitals. During the K-capture process, an electron is specifically captured from an inner p-orbital within the K-shell. Choices A, C, and D are incorrect because K-capture involves capturing an electron from the innermost shell (K-shell) which consists of s and p orbitals, not the outermost s-orbital, inner d-orbital, or any available electron shell.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access