how does the stability of an atoms nucleus influence its radioactive decay
Logo

Nursing Elites

ATI TEAS 7

Mometrix TEAS 7 science practice test

1. How does the stability of an atom's nucleus influence its radioactive decay?

Correct answer: B

Rationale: Unstable nuclei are more likely to decay through various processes. The stability of an atom's nucleus is a crucial factor in determining whether it will undergo radioactive decay. Unstable nuclei have an excess of either protons or neutrons, causing an imbalance in the nucleus. To achieve a more stable configuration, these nuclei will undergo radioactive decay by emitting particles or energy. On the contrary, stable nuclei are less likely to undergo radioactive decay as they possess a balanced number of protons and neutrons. Choice A is incorrect because stable nuclei can still undergo radioactive decay, albeit less frequently. Choice C is incorrect as decay does not make stable nuclei more prone to it; rather, it stabilizes them. Choice D is incorrect because an element's decay rate is primarily determined by the nucleus's stability, not its position on the periodic table.

2. Which of the following sets of valves is primarily responsible for preventing blood flow from major blood vessels to the heart?

Correct answer: B

Rationale: The correct answer is B: semilunar valves. Semilunar valves are primarily responsible for preventing blood flow from major blood vessels to the heart. These valves are located at the base of the aorta and the pulmonary artery, ensuring blood flows in one direction only by closing when the ventricles relax to prevent blood from flowing back into the heart. Choices A, C, and D are incorrect. Atrioventricular valves (choice A) include the tricuspid and bicuspid valves, which prevent backflow between the atria and ventricles, not major blood vessels. Tricuspid valves (choice C) and bicuspid valves (choice D) are specific types of atrioventricular valves located between the atria and ventricles, not at the base of major blood vessels.

3. Where is the energy for most cellular processes produced?

Correct answer: C

Rationale: The correct answer is C: Mitochondria. The energy for most cellular processes is produced in the mitochondria through the process of cellular respiration. Mitochondria are often referred to as the powerhouse of the cell because they generate ATP, the energy currency of the cell. This process involves the breakdown of glucose molecules to produce ATP, which fuels various cellular activities. Choices A, B, and D are incorrect. The nucleus is responsible for storing genetic material and controlling cell activities, not energy production. The cytoplasm is where various cellular activities take place, but it is not the primary site for energy production. Ribosomes are involved in protein synthesis and do not generate energy for cellular processes.

4. Which of the following is an example of Mendelian inheritance?

Correct answer: D

Rationale: The correct answer is D, 'Recessive Inheritance.' Mendelian inheritance involves traits controlled by single genes with dominant and recessive alleles. Incomplete dominance (choice A) is a non-Mendelian inheritance pattern where the heterozygous phenotype is a blend of the two homozygous phenotypes. Polygenic alleles (choice B) involve multiple genes contributing to a single trait, not following Mendelian principles. Combination inheritance (choice C) is not a recognized term in genetics and does not describe Mendelian inheritance patterns.

5. What property of a wave determines its speed in a given medium?

Correct answer: D

Rationale: The speed of a wave in a given medium is determined by the properties of that medium, such as its density and elasticity. While amplitude, wavelength, and frequency are important characteristics of a wave, they do not directly impact its speed in a specific medium. Amplitude refers to the maximum displacement of particles in a wave, wavelength is the distance between two successive points in a wave that are in phase, and frequency is the number of complete oscillations a wave makes in a given time. However, these properties do not dictate the speed of a wave in a particular medium. Therefore, the correct answer is the medium's properties.

Similar Questions

Which hormone, produced by the pancreas, acts in opposition to insulin by increasing blood sugar levels?
What is the primary function of red blood cells in the cardiovascular system?
How many neurons typically comprise a sensory pathway?
Which level of protein structure is defined by the folds and coils of the protein's polypeptide backbone?
Which of the following scenarios represents an example of static friction?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses