ATI TEAS 7
ATI TEAS Practice Science Test
1. After a person eats birthday cake, which of the following enzymes is needed to break down the sucrose in the cake?
- A. Lactase
- B. Maltase
- C. Peptidase
- D. Sucrase
Correct answer: D
Rationale: Sucrase is the correct enzyme needed to break down sucrose into its component sugars, glucose, and fructose. Lactase is responsible for breaking down lactose, maltase for maltose, and peptidase for proteins; therefore, they are not the enzymes required to digest sucrose specifically. In the context of digesting birthday cake, which contains sucrose, sucrase is the enzyme needed for this particular sugar.
2. What is the formula to calculate gravitational potential energy near the Earth's surface?
- A. Potential Energy = Mass × Acceleration
- B. Potential Energy = Force × Distance
- C. Potential Energy = Mass × Height × Gravity
- D. Potential Energy = Mass × Acceleration due to gravity × Height
Correct answer: D
Rationale: The correct formula to calculate gravitational potential energy near the Earth's surface is Potential Energy = Mass × Acceleration due to gravity × Height. This formula considers the mass of the object, the specific acceleration due to gravity near the Earth's surface (approximately 9.81 m/s^2), and the vertical distance from the reference point. Choice A is incorrect as it does not include height in the formula. Choice B is incorrect as it involves force instead of acceleration due to gravity. Choice C is incorrect as it multiplies mass, height, and gravity, missing the actual acceleration due to gravity term.
3. What are the differences between RNA and DNA?
- A. Both have the same structure and function.
- B. RNA is single-stranded, while DNA is double-stranded.
- C. RNA contains ribose sugar, while DNA contains deoxyribose sugar.
- D. RNA has adenine and guanine, while DNA has thymine and cytosine.
Correct answer: B
Rationale: A) This statement is incorrect. RNA and DNA have different structures and functions. RNA is involved in protein synthesis and other cellular processes, while DNA stores genetic information. B) This statement is correct. RNA is typically single-stranded, while DNA is double-stranded, forming a double helix structure. C) This statement is correct. RNA contains ribose sugar in its backbone, while DNA contains deoxyribose sugar. D) This statement is incorrect. RNA contains adenine, guanine, cytosine, and uracil, while DNA contains adenine, guanine, cytosine, and thymine. Choice B is the correct answer as it accurately describes one of the key differences between RNA and DNA, emphasizing their structural disparity in terms of single-strandedness for RNA and double-strandedness for DNA. Choices A, C, and D contain inaccuracies regarding the structural and compositional distinctions between RNA and DNA, making them incorrect choices.
4. Which of the following factors would NOT affect the solubility of a solid solute in a liquid solvent?
- A. Temperature
- B. Pressure
- C. Particle size
- D. Nature of the solute and solvent
Correct answer: B
Rationale: Pressure does not typically affect the solubility of a solid solute in a liquid solvent. Solubility is primarily influenced by factors such as temperature, particle size, and the nature of the solute and solvent. Increasing pressure generally has a minimal effect on the solubility of solids in liquids. The impact of pressure on solubility is more significant for gases in liquids rather than solids in liquids. Therefore, option B is the correct answer. Options A, C, and D directly impact the solubility of a solid solute in a liquid solvent. Temperature affects the solubility as it changes the kinetic energy of particles, particle size can impact the surface area available for interaction between solute and solvent, and the nature of the solute and solvent influences their intermolecular interactions and compatibility.
5. A rocket engine expels hot gases backwards. What principle explains the rocket's forward motion?
- A. Newton's first law of motion
- B. Newton's second law of motion
- C. Newton's third law of motion
- D. Law of conservation of energy
Correct answer: C
Rationale: Newton's third law of motion states that for every action, there is an equal and opposite reaction. In the case of a rocket engine expelling hot gases backwards, the action is the expulsion of gases, and the reaction is the forward motion of the rocket. The hot gases being expelled act as the action force, propelling the rocket in the opposite direction as the reaction force, resulting in the rocket's forward motion. Newton's first law of motion (Choice A) pertains to inertia, stating that an object in motion will stay in motion unless acted upon by an external force. Newton's second law of motion (Choice B) relates force, mass, and acceleration, which is not directly applicable to the scenario of a rocket engine propulsion. The law of conservation of energy (Choice D) is a fundamental principle stating that energy cannot be created or destroyed but can only be transformed, which does not directly explain the forward motion of the rocket in this context.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access