ATI TEAS 7
TEAS 7 practice test science
1. What determines the frequency of oscillations in a spring-mass system when the spring is stretched and released?
- A. The mass of the object
- B. The stiffness of the spring
- C. The initial displacement of the object
- D. All of the above
Correct answer: B
Rationale: The frequency of oscillations in a spring-mass system is determined by the stiffness of the spring (spring constant) and the mass of the object. The stiffness of the spring affects how quickly the system oscillates back and forth, while the mass of the object influences the inertia and therefore the frequency. The initial displacement of the object does not impact the frequency of oscillations. Choice A is incorrect because while the mass of the object affects the frequency, it is not the sole determining factor. Choice C is incorrect as the initial displacement affects the amplitude of oscillations, not the frequency. Choice D is incorrect as not all factors listed determine the frequency, making it an incorrect choice.
2. What unit is used for measuring luminous flux, which indicates the perceived brightness of a light source by the human eye?
- A. Candela
- B. Lumen
- C. Lux
- D. Hertz
Correct answer: B
Rationale: Lumen is the correct unit for measuring luminous flux, which quantifies the total visible light emitted by a source per unit of time. Candela measures luminous intensity, lux measures illuminance, and Hertz measures frequency. Therefore, in the context of measuring the perceived brightness of a light source by the human eye, luminous flux is quantified in lumens.
3. What is the balanced chemical equation for the reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH)?
- A. H2SO4 + KOH → K2SO4 + H2O
- B. 2H2SO4 + 2KOH → 2K2SO4 + 2H2O
- C. H2SO4 + 2KOH → K2SO4 + 2H2O
- D. H2SO4 + 2KOH → K2SO4 + H2O
Correct answer: C
Rationale: When sulfuric acid (H2SO4) reacts with potassium hydroxide (KOH), it forms potassium sulfate (K2SO4) and water (H2O). To balance the equation, 2 KOH molecules are required to react with 1 H2SO4 molecule, resulting in 1 K2SO4 molecule and 2 H2O molecules. Therefore, the balanced chemical equation is H2SO4 + 2KOH → K2SO4 + 2H2O, which corresponds to option C. Choice A is incorrect because it does not account for the correct stoichiometry between the reactants and products. Choice B incorrectly doubles all the molecules in the reaction, leading to an unbalanced equation. Choice D incorrectly balances the equation with 1 KOH molecule instead of the required 2 KOH molecules, making it unbalanced. Thus, option C is the correct balanced chemical equation for the reaction between sulfuric acid and potassium hydroxide.
4. Salts like sodium iodide (NaI) and potassium chloride (KCl) use what type of bond?
- A. Ionic bonds
- B. Disulfide bridges
- C. Covalent bonds
- D. London dispersion forces
Correct answer: A
Rationale: Salts like sodium iodide (NaI) and potassium chloride (KCl) use ionic bonds. Ionic bonds are formed between atoms with significantly different electronegativities, leading to the transfer of electrons from one atom to another. In the case of NaI and KCl, sodium (Na) and potassium (K) are metals that easily lose electrons to become positively charged ions, while iodide (I) and chloride (Cl) are nonmetals that readily accept electrons to become negatively charged ions. The attraction between the oppositely charged ions forms the ionic bond, which holds the compound together in a lattice structure. Disulfide bridges (option B) are covalent bonds formed between sulfur atoms in proteins, not in salts. Covalent bonds (option C) involve the sharing of electrons between atoms and are typically seen in molecules, not ionic compounds like salts. London dispersion forces (option D) are weak intermolecular forces that occur between all types of molecules but are not the primary type of bond in salts like NaI and KCl.
5. Which of the following is a chief difference between evaporation and boiling?
- A. Liquids boil only at the surface, while they evaporate equally throughout the liquid.
- B. Evaporating substances change from liquid to gas, while boiling substances change from gas to liquid.
- C. Evaporation can happen below a liquid's boiling point.
- D. Evaporation happens in nature, while boiling is a man-made phenomenon.
Correct answer: C
Rationale: The chief difference between evaporation and boiling is that evaporation can happen below a liquid's boiling point, while boiling only occurs at the liquid's boiling point. Evaporation is the process of a liquid turning into a gas at any temperature, while boiling specifically refers to the rapid vaporization that occurs when a liquid reaches its boiling point. Choice A is incorrect because liquids evaporate throughout the liquid, not just at the surface. Choice B is incorrect as evaporating substances change from liquid to gas, while boiling substances change from liquid to gas. Choice C is incorrect as boiling is not a man-made phenomenon; in fact, it is a natural process based on temperature changes. Choice D is incorrect because evaporation can happen naturally and is not limited to man-made processes.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access