ATI TEAS 7
TEAS 7 science practice
1. What is the primary difference between ionic and metallic bonding?
- A. Ionic bonds involve electron transfer, while metallic bonds involve electron sharing.
- B. Ionic bonds are weak and directional, while metallic bonds are strong and non-directional.
- C. Ionic bonds exist between metals and non-metals, while metallic bonds exist only between metals.
- D. Ionic bonds form discrete molecules, while metallic bonds form extended structures.
Correct answer: B
Rationale: Ionic bonds involve electron transfer, where one atom completely donates an electron to another, resulting in discrete molecules. On the other hand, metallic bonds are non-directional and strong, formed by a 'sea' of delocalized electrons shared among all metal atoms. This shared electron cloud allows for strong bonding throughout the entire material, making metallic bonds non-directional and strong compared to the directional and weaker nature of ionic bonds. Choice A is incorrect because metallic bonds do not involve electron sharing but rather the sharing of a sea of delocalized electrons. Choice C is incorrect as metallic bonds can also exist between metal atoms, not just between metals and non-metals. Choice D is incorrect because metallic bonds do not form discrete molecules but rather extended structures due to the sharing of electrons among all metal atoms.
2. Which of the following types of stem cells can differentiate into any cell type, including forming an entire organism?
- A. Totipotent stem cells
- B. Multipotent stem cells
- C. Pluripotent stem cells
- D. Hematopoietic stem cells
Correct answer: A
Rationale: Totipotent stem cells possess the unique ability to differentiate into any cell type, including forming an entire organism. These cells have the highest potency level and can give rise to both embryonic and extraembryonic cell types, allowing them to develop into a complete organism. Multipotent stem cells (Choice B) can differentiate into a limited range of cell types within a specific tissue or organ. Pluripotent stem cells (Choice C) can differentiate into any cell type in the body except for those needed to support and develop a fetus. Hematopoietic stem cells (Choice D) are a type of multipotent stem cell that can differentiate into various blood cell types.
3. What is the term for the chemical reaction that involves the loss of electrons?
- A. Reduction
- B. Oxidation
- C. Neutralization
- D. Precipitation
Correct answer: B
Rationale: Oxidation is the process where a substance loses electrons. In an oxidation reaction, the substance being oxidized loses electrons, which are gained by another substance. Reduction is the opposite process, where a substance gains electrons. Neutralization is a reaction between an acid and a base to form a salt and water. Precipitation is the formation of a solid from a solution. Therefore, in the context of a chemical reaction involving the loss of electrons, the correct term is oxidation (Choice B).
4. Bone is primarily composed of which of the following inorganic materials?
- A. calcium
- B. magnesium
- C. collagen
- D. potassium
Correct answer: A
Rationale: Bone is primarily composed of calcium, making up about 70% of its inorganic content. Calcium is essential for bone strength and structure, playing a key role in maintaining bone health. Choice B, magnesium, while important for bone health, is found in smaller amounts in bones compared to calcium. Choice C, collagen, is a protein and is a major organic component of bone, not an inorganic material. Choice D, potassium, is an essential mineral for various bodily functions but is not a primary inorganic material found in bones.
5. Not all cells in the pancreas secrete insulin because of the hormone somatostatin, which inhibits the release of insulin by all cells. What type of intercellular chemical signal does this illustrate?
- A. Autocrine
- B. Neuromodulator
- C. Paracrine
- D. Pheromone
Correct answer: C
Rationale: The correct answer is C: Paracrine. Somatostatin acts in a paracrine manner by inhibiting the release of insulin from nearby cells within the pancreas. Paracrine signaling involves the secretion of signals that act on neighboring cells, as seen in this scenario where somatostatin affects nearby pancreatic cells without entering the bloodstream or affecting distant cells. Autocrine signaling involves cells responding to substances they themselves release, which is not the case here. Neuromodulators are chemicals that modulate the activity of neurons, not directly related to this scenario. Pheromones are chemicals released into the environment to communicate with individuals of the same species, not relevant to the signaling within the pancreas.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access